303 lines
7.9 KiB
JavaScript
303 lines
7.9 KiB
JavaScript
// Original source code: https://github.com/ttezel/bayes/blob/master/lib/naive_bayes.js (commit: 2c20d3066e4fc786400aaedcf3e42987e52abe3c)
|
|
// CUSTOMIZED BY SYUILO
|
|
|
|
/*
|
|
Expose our naive-bayes generator function
|
|
*/
|
|
module.exports = function (options) {
|
|
return new Naivebayes(options)
|
|
}
|
|
|
|
// keys we use to serialize a classifier's state
|
|
var STATE_KEYS = module.exports.STATE_KEYS = [
|
|
'categories', 'docCount', 'totalDocuments', 'vocabulary', 'vocabularySize',
|
|
'wordCount', 'wordFrequencyCount', 'options'
|
|
];
|
|
|
|
/**
|
|
* Initializes a NaiveBayes instance from a JSON state representation.
|
|
* Use this with classifier.toJson().
|
|
*
|
|
* @param {String} jsonStr state representation obtained by classifier.toJson()
|
|
* @return {NaiveBayes} Classifier
|
|
*/
|
|
module.exports.fromJson = function (jsonStr) {
|
|
var parsed;
|
|
try {
|
|
parsed = JSON.parse(jsonStr)
|
|
} catch (e) {
|
|
throw new Error('Naivebayes.fromJson expects a valid JSON string.')
|
|
}
|
|
// init a new classifier
|
|
var classifier = new Naivebayes(parsed.options)
|
|
|
|
// override the classifier's state
|
|
STATE_KEYS.forEach(function (k) {
|
|
if (!parsed[k]) {
|
|
throw new Error('Naivebayes.fromJson: JSON string is missing an expected property: `'+k+'`.')
|
|
}
|
|
classifier[k] = parsed[k]
|
|
})
|
|
|
|
return classifier
|
|
}
|
|
|
|
/**
|
|
* Given an input string, tokenize it into an array of word tokens.
|
|
* This is the default tokenization function used if user does not provide one in `options`.
|
|
*
|
|
* @param {String} text
|
|
* @return {Array}
|
|
*/
|
|
var defaultTokenizer = function (text) {
|
|
//remove punctuation from text - remove anything that isn't a word char or a space
|
|
var rgxPunctuation = /[^(a-zA-ZA-Яa-я0-9_)+\s]/g
|
|
|
|
var sanitized = text.replace(rgxPunctuation, ' ')
|
|
|
|
return sanitized.split(/\s+/)
|
|
}
|
|
|
|
/**
|
|
* Naive-Bayes Classifier
|
|
*
|
|
* This is a naive-bayes classifier that uses Laplace Smoothing.
|
|
*
|
|
* Takes an (optional) options object containing:
|
|
* - `tokenizer` => custom tokenization function
|
|
*
|
|
*/
|
|
function Naivebayes (options) {
|
|
// set options object
|
|
this.options = {}
|
|
if (typeof options !== 'undefined') {
|
|
if (!options || typeof options !== 'object' || Array.isArray(options)) {
|
|
throw TypeError('NaiveBayes got invalid `options`: `' + options + '`. Pass in an object.')
|
|
}
|
|
this.options = options
|
|
}
|
|
|
|
this.tokenizer = this.options.tokenizer || defaultTokenizer
|
|
|
|
//initialize our vocabulary and its size
|
|
this.vocabulary = {}
|
|
this.vocabularySize = 0
|
|
|
|
//number of documents we have learned from
|
|
this.totalDocuments = 0
|
|
|
|
//document frequency table for each of our categories
|
|
//=> for each category, how often were documents mapped to it
|
|
this.docCount = {}
|
|
|
|
//for each category, how many words total were mapped to it
|
|
this.wordCount = {}
|
|
|
|
//word frequency table for each category
|
|
//=> for each category, how frequent was a given word mapped to it
|
|
this.wordFrequencyCount = {}
|
|
|
|
//hashmap of our category names
|
|
this.categories = {}
|
|
}
|
|
|
|
/**
|
|
* Initialize each of our data structure entries for this new category
|
|
*
|
|
* @param {String} categoryName
|
|
*/
|
|
Naivebayes.prototype.initializeCategory = function (categoryName) {
|
|
if (!this.categories[categoryName]) {
|
|
this.docCount[categoryName] = 0
|
|
this.wordCount[categoryName] = 0
|
|
this.wordFrequencyCount[categoryName] = {}
|
|
this.categories[categoryName] = true
|
|
}
|
|
return this
|
|
}
|
|
|
|
/**
|
|
* train our naive-bayes classifier by telling it what `category`
|
|
* the `text` corresponds to.
|
|
*
|
|
* @param {String} text
|
|
* @param {String} class
|
|
*/
|
|
Naivebayes.prototype.learn = function (text, category) {
|
|
var self = this
|
|
|
|
//initialize category data structures if we've never seen this category
|
|
self.initializeCategory(category)
|
|
|
|
//update our count of how many documents mapped to this category
|
|
self.docCount[category]++
|
|
|
|
//update the total number of documents we have learned from
|
|
self.totalDocuments++
|
|
|
|
//normalize the text into a word array
|
|
var tokens = self.tokenizer(text)
|
|
|
|
//get a frequency count for each token in the text
|
|
var frequencyTable = self.frequencyTable(tokens)
|
|
|
|
/*
|
|
Update our vocabulary and our word frequency count for this category
|
|
*/
|
|
|
|
Object
|
|
.keys(frequencyTable)
|
|
.forEach(function (token) {
|
|
//add this word to our vocabulary if not already existing
|
|
if (!self.vocabulary[token]) {
|
|
self.vocabulary[token] = true
|
|
self.vocabularySize++
|
|
}
|
|
|
|
var frequencyInText = frequencyTable[token]
|
|
|
|
//update the frequency information for this word in this category
|
|
if (!self.wordFrequencyCount[category][token])
|
|
self.wordFrequencyCount[category][token] = frequencyInText
|
|
else
|
|
self.wordFrequencyCount[category][token] += frequencyInText
|
|
|
|
//update the count of all words we have seen mapped to this category
|
|
self.wordCount[category] += frequencyInText
|
|
})
|
|
|
|
return self
|
|
}
|
|
|
|
/**
|
|
* Determine what category `text` belongs to.
|
|
*
|
|
* @param {String} text
|
|
* @return {String} category
|
|
*/
|
|
Naivebayes.prototype.categorize = function (text) {
|
|
var self = this
|
|
, maxProbability = -Infinity
|
|
, chosenCategory = null
|
|
|
|
var tokens = self.tokenizer(text)
|
|
var frequencyTable = self.frequencyTable(tokens)
|
|
|
|
//iterate thru our categories to find the one with max probability for this text
|
|
Object
|
|
.keys(self.categories)
|
|
.forEach(function (category) {
|
|
|
|
//start by calculating the overall probability of this category
|
|
//=> out of all documents we've ever looked at, how many were
|
|
// mapped to this category
|
|
var categoryProbability = self.docCount[category] / self.totalDocuments
|
|
|
|
//take the log to avoid underflow
|
|
var logProbability = Math.log(categoryProbability)
|
|
|
|
//now determine P( w | c ) for each word `w` in the text
|
|
Object
|
|
.keys(frequencyTable)
|
|
.forEach(function (token) {
|
|
var frequencyInText = frequencyTable[token]
|
|
var tokenProbability = self.tokenProbability(token, category)
|
|
|
|
// console.log('token: %s category: `%s` tokenProbability: %d', token, category, tokenProbability)
|
|
|
|
//determine the log of the P( w | c ) for this word
|
|
logProbability += frequencyInText * Math.log(tokenProbability)
|
|
})
|
|
|
|
if (logProbability > maxProbability) {
|
|
maxProbability = logProbability
|
|
chosenCategory = category
|
|
}
|
|
})
|
|
|
|
return chosenCategory
|
|
}
|
|
|
|
/**
|
|
* Calculate probability that a `token` belongs to a `category`
|
|
*
|
|
* @param {String} token
|
|
* @param {String} category
|
|
* @return {Number} probability
|
|
*/
|
|
Naivebayes.prototype.tokenProbability = function (token, category) {
|
|
//how many times this word has occurred in documents mapped to this category
|
|
var wordFrequencyCount = this.wordFrequencyCount[category][token] || 0
|
|
|
|
//what is the count of all words that have ever been mapped to this category
|
|
var wordCount = this.wordCount[category]
|
|
|
|
//use laplace Add-1 Smoothing equation
|
|
return ( wordFrequencyCount + 1 ) / ( wordCount + this.vocabularySize )
|
|
}
|
|
|
|
/**
|
|
* Build a frequency hashmap where
|
|
* - the keys are the entries in `tokens`
|
|
* - the values are the frequency of each entry in `tokens`
|
|
*
|
|
* @param {Array} tokens Normalized word array
|
|
* @return {Object}
|
|
*/
|
|
Naivebayes.prototype.frequencyTable = function (tokens) {
|
|
var frequencyTable = Object.create(null)
|
|
|
|
tokens.forEach(function (token) {
|
|
if (!frequencyTable[token])
|
|
frequencyTable[token] = 1
|
|
else
|
|
frequencyTable[token]++
|
|
})
|
|
|
|
return frequencyTable
|
|
}
|
|
|
|
/**
|
|
* Dump the classifier's state as a JSON string.
|
|
* @return {String} Representation of the classifier.
|
|
*/
|
|
Naivebayes.prototype.toJson = function () {
|
|
var state = {}
|
|
var self = this
|
|
STATE_KEYS.forEach(function (k) {
|
|
state[k] = self[k]
|
|
})
|
|
|
|
var jsonStr = JSON.stringify(state)
|
|
|
|
return jsonStr
|
|
}
|
|
|
|
// (original method)
|
|
Naivebayes.prototype.export = function () {
|
|
var state = {}
|
|
var self = this
|
|
STATE_KEYS.forEach(function (k) {
|
|
state[k] = self[k]
|
|
})
|
|
|
|
return state
|
|
}
|
|
|
|
module.exports.import = function (data) {
|
|
var parsed = data
|
|
|
|
// init a new classifier
|
|
var classifier = new Naivebayes()
|
|
|
|
// override the classifier's state
|
|
STATE_KEYS.forEach(function (k) {
|
|
if (!parsed[k]) {
|
|
throw new Error('Naivebayes.import: data is missing an expected property: `'+k+'`.')
|
|
}
|
|
classifier[k] = parsed[k]
|
|
})
|
|
|
|
return classifier
|
|
}
|